Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 125: 102426, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37220980

RESUMO

At the end of July 2021, a bloom of Lingulodinium polyedra developed along the French Atlantic coast and lasted six weeks. The REPHY monitoring network and the citizen participation project PHENOMER contributed to its observation. A maximum concentration of 3,600,000 cells/L was reached on the 6th of September, a level never recorded on French coastlines. Satellite observation confirmed that the bloom reached its highest abundance and spatial extension early September, covering about 3200 km2 on the 4th of September. Cultures were established, and morphology and ITS-LSU sequencing identified the species as L. polyedra. The thecae displayed the characteristic tabulation and sometimes a ventral pore. The pigment composition of the bloom was similar to that of cultured L. polyedra, confirming that phytoplankton biomass was dominated by this species. The bloom was preceded by Leptocylindrus sp., developed over Lepidodinium chlorophorum, and was succeeded by elevated Noctiluca scintillans concentrations. Afterwards, relatively high abundance of Alexandrium tamarense were observed in the embayment where the bloom started. Unusually high precipitation during mid-July increased river discharges from the Loire and Vilaine rivers, which likely fueled phytoplankton growth by providing nutrients. Water masses with high numbers of dinoflagellates were characterized by high sea surface temperature and thermohaline stratification. The wind was low during the bloom development, before drifting it offshore. Cysts were observed in the plankton towards the end of the bloom, with concentrations up to 30,000 cysts/L and relative abundances up to 99%. The bloom deposited a seed bank, with cyst concentrations up to 100,000 cysts/g dried sediment, particularly in fine-grained sediments. The bloom caused hypoxia events, and concentrations of yessotoxins up to 747 µg/kg were recorded in mussels, below the safety threshold of 3,750 µg/kg. Oysters, clams and cockles also were contaminated with yessotoxins, but at lower concentrations. The established cultures did not produce yessotoxins at detectable levels, although yessotoxins were detected in the sediment. The unusual environmental summertime conditions that triggered the bloom, as well as the establishment of considerable seed banks, provide important findings to understand future harmful algal blooms along the French coastline.


Assuntos
Dinoflagellida , Fitoplâncton , Proliferação Nociva de Algas , Biomassa
2.
Sensors (Basel) ; 14(9): 16881-931, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215941

RESUMO

Human activity and natural climate trends constitute a major threat to coral reefs worldwide. Models predict a significant reduction in reef spatial extension together with a decline in biodiversity in the relatively near future. In this context, monitoring programs to detect changes in reef ecosystems are essential. In recent years, coral reef mapping using remote sensing data has benefited from instruments with better resolution and computational advances in storage and processing capabilities. However, the water column represents an additional complexity when extracting information from submerged substrates by remote sensing that demands a correction of its effect. In this article, the basic concepts of bottom substrate remote sensing and water column interference are presented. A compendium of methodologies developed to reduce water column effects in coral ecosystems studied by remote sensing that include their salient features, advantages and drawbacks is provided. Finally, algorithms to retrieve the bottom reflectance are applied to simulated data and actual remote sensing imagery and their performance is compared. The available methods are not able to completely eliminate the water column effect, but they can minimize its influence. Choosing the best method depends on the marine environment, available input data and desired outcome or scientific application.


Assuntos
Artefatos , Recifes de Corais , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Refratometria/métodos , Tecnologia de Sensoriamento Remoto/métodos , Água do Mar/química , Simulação por Computador , Luz , Modelos Químicos , Tecnologia de Sensoriamento Remoto/instrumentação , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...